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Abstract

We present several variational methods for image generation and image
completion. We explore attribute-free and attribute-based settings and

demonstrate the effectiveness of variational models in one-shot generation.
We also present models that are robust to partial observation in the input
image and are better suited for the image completion task. We benchmark
the performance of these models on the CelebA dataset and demonstrate

state of the art results in the attribute-guided image completion task.

1 Introduction
Understanding the generative model for the space of images is an important requirement
for many computer vision tasks such as image denoising, image inpainting, and image
dataset augmentation. Generative adversarial networks [5, 10] and variational methods [3]
have been successfully employed to generate complex real world images. Most of these
methods attempt to find a low-dimensional manifold that the natural images exist on and a
corresponding mechanism to sample from this manifold. We build on these frameworks
by proposing a set of methods for attribute-free and attribute-based image generation
and further extend these models to image in-painting. We use a variational autoencoder
(VAE) [7] model and incorporate perceptual loss using a pretrained classification network
and demonstrate its improvement over a vanilla VAE. We show that this is equivalent
to the maximum likelihood estimate of the data under "neural" class of distributions.
Additionally, introducing attributes presents a harder task than attribute-free generation
since the attributes need to be de-correlated from the latent variables and from each other.
However, this assumption rarely holds when we have a pre-specified set of attributes. We
demonstrate multiple models that incorporate attribute information, either in the encoder,
the decoder or both.

2 Related Works
Autoencoders are graphical models composed of a generative model of data given latent
variables and a recognition model for the latent variables. Bengio et al. [2] present a general-
ized framework to use autoencoders as generative models for a wide class of distributions.
Kingma et al. [7] introduced the first framework to formulate variational inference on
neural networks. VAEs provide a mechanism for sampling from certain classes of distribu-
tions that can be approximated with a neural network. Furthermore, they can be trained
with only gradient-based methods, making them conducive for learning distributions over
high-dimensional data. Recent work by Yan et al. [15] and Vedantam et al. [13] have
demonstrated the ability to generate images using conditional autoencoders. Yan et al. use
an autoencoder to disentangle an image into its attributes and use this representation to
generate images. Vedantam et al. use a product of experts models to hierarchically calculate
the posterior and generate images given any subset of attributes. More recents methods
like the VAE-GAN [8], CVAE-GAN [1] and ALI [4] have explored a hybrid approach to
generation that combines aspects of both variational autoencoders and GANS.
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3 Approach

We will expand on using VAEs for image generation and completion using the CelebA
dataset [9]. The work by [15] propose a model based on the CVAE framework. We propose to
extend their work by changing the objective function to incorporate better image generation.
The setup is similar to Yan et al. [13] in that we will have a modified ELBO loss that
measures diversity and "success" of image completion based on the discovered attributes.
Additionally, we will factor in the perceptual loss [6] to ensure that the generated images
look perceptually accurate. We will evaluate the performances using the newly proposed
perceptual distance [16].

3.1 Latent variable

The latent variable approach is an extension of the architecture used by Yan et al.[15] which
uses a CVAE to learn a generative model of image and attributes.

We assume a set of latent factors that explain the image and serve as sufficient statistics for
image generation. We build a recognition network to approximate the latent distribution
given an image. More concretely, for a data point X and latent variable Z, we instantiate
the generative model pθ(X|Z) and we approximate qφ(Z|X) as the variational lower
bound of the posterior pθ(Z|X). We assume a Gaussian prior on Z and maximize
L = E[ELBO(x; θ, φ)] where:

ELBO(x; θ, φ) = Ez∼qφ(z|x)[log pθ(x|z)]− KL(qφ(z|x)||pθ(z)) (1)

The MLE of θ with a Gaussian prior is the same as optimizing for the reconstruction error of
x. However, we note that this MLE is not an unbiased estimate unless p(z|x) and q(z|x)
match exactly. In addition to the reconstruction loss, we add perceptual loss to the objec-
tive as follows and learn the parameters of the generative model using the updated objective.

Lrecon =
∥∥xgen − xgt

∥∥2
+ ∑

l
λl

∥∥ηl(xgen)− ηl(xgt)
∥∥2 (2)

Where xgen denotes the generated image and xgt denotes the ground truth image. ηl refers
to the activation of the lth layer of a pre-trained VGG16 classification network. The λl terms
decide the contribution of each layer towards the loss. The addition of these terms is akin
to increasing the statistics to match an image. For a purely Gaussian assumption on the
output, the first term is equivalent to matching the mean statistics of each pixel in the image.
This leads to often blurry generated images. However, if we also assume that the features of
images are Gaussian distributed for a class of images, the additional terms from VGG act
as adding higher order non-linear relations between pixels. By matching the statistics of
nonlinear interactions between pixels in the generated image and ground truth image, more
information can be captured in the image, leading to better generation quality.

We consider a variation of this previous model on partially observed images where the
generative model remains pθ(x|z) whilst the recognition model is modified to incorporate
partially observed data x′ as qφ(z|x′). This makes the latent space more robust to partially
observed data by learning to capture the structure in the data better. For both models, we
can generate novel images by sampling z ∼ N (0, 1).

For image completion, we perform an iterative variational Gibbs sampling approach during
test time as demonstrated by Rezende et al. [11], given by:

Zt ∼ qφ(Z|X′t) Xt ∼ pθ(X|Zt) X′t+1 = m� X′t + (1−m)� Xt

where m is a binary mask of the cropped region, X′t is the cropped input image, and Xt is
the reconstructed image from the latent representation of X′t.

We can refine the model further to be better suited for the task of image completion at
the cost of reduced generation performance. In the previous approach, we only used the
latent representation, Z, to reconstruct the image. As before, we do not use the attribute
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annotations, but now we utilize the partially observed input image, X′, and its latent
representation, Z, as input to the network. Thus, the generative model is described by
pθ(X, Z, X′) and the variational approximation by qφ(Z, X′).

The key difference in this approach is that the iterative sampling step from the previous
approach now occurs during training time. This allows us to perform one-shot image
completion at test time.

3.2 Latent variables and attributes

In this section we include the attributes in the network architecture and develop the opti-
mal generative and recognition network suited for attribute-based generation and image
completion tasks.

First, we pass the full attribute label, Y, and the latent representation, Z, of the corresponding
image to the generative model as pθ(x|z, y). The recognition model encodes some non-
interpretable latents as qφ(z|x). Although this is a natural way of introducing attributes into
the generation process, it often leads to redundant encoding.

Ideally, latents and attributes need to be de-correlated from each other. The feature attributes
can be added into the network in three different places: the encoder, decoder or both.

When the attribute is passed to only the encoder, we sample Z ∼ q(Z|X′, Y) and X ∼
p(X|Z). When the attribute is passed to only the decoder, we sample Z ∼ q(Z|X′) and
X ∼ p(X|Z, Y). When the attribute is passed to both the encoder and decoder, we sample
Z ∼ q(Z|X′, Y) and X ∼ p(X|Z, Y).

4 Experiments

We present our results on the CelebA dataset [9]. The recognition model is an approximation
of the posterior defined by the generative model. Figure 1 demonstrates our best qualitative
results on image completion achieved by including the attributes in both the encoder and
decoder. As shown in the figure, this model performs image completions consistent with
the attribute with high probability. Additional results are included in the Appendix.

Figure 1: Results of feeding attribute to both encoder and decoder.

5 Conclusion

In this paper we introduce several methods for image generation in increasing complexity.
We incorporate techniques such as an iterative MCMC sampling process and injecting
the attribute vector in different places of the model to show improvements on the image
completion task. We evaluate our results on a modified version of the CelebA dataset
with qualitative evaluations as well as quantitative metrics, including the Inception score,
perceptual distance, and SSIM.
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6 Appendix

6.1 Fully observed data without attributes

Figure 2: Results of training on complete images without attributes. This model is a VAE
trained with an additional VGG loss term. Where x ∼ pθ(x|z) and z ∼ qφ(z|x). For image x
and latent z. Inpainting is performed by iterative sampling.

6.2 Partially observed data without attributes

Figure 3: Results of training on cropped images without attributes. The encoder is trained
with partially observed images, x ∼ pθ(x|z) and z ∼ qφ(z|x′). For image x and latent z and
partially observed image x′.

6.3 Comparison of fully observed and partially observed data

Figure 4: Side-by-side comparison of training on complete vs. cropped images.
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Figure 5: Comparison of the iterative sampling approach using the latent variable on
complete and cropped images. The red box indicates the ground truth image.

6.4 Fully observed data with 1 attribute

Figure 6: Attribute-based generation. We sample z ∼ N(0, I) and use the decoder trained on
fully observed images and attributes, to generate x ∼ pθ(x|z, y),with different attributes for
the same latent vector, demonstrating that the latents are disentangles from the attributes

.

6.5 Comparison of conditioning only the encoder or the decoder on attributes

(a) Results of conditioning only the en-
coder on attributes.

(b) Results of conditioning only the de-
coder on attributes.

Figure 7: Side-by-side comparison of the two methods.

6.6 Quantitative results

We evaluate the results of our various approaches using the Inception score [12], perceptual
distance [17], and the Structural Similarity (SSIM) metric [14].
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Model Inception Perceptual Distance SSIM

Complete + no attributes 3.096±0.172 0.175±0.002 0.451±0.001
Cropped + no attributes 2.934±0.044 0.169±0.002 0.446±0.001

Cropped + no attr, unmasked recon 2.217±0.052 0.165±0.002 0.437±0.002
Complete + all attributes 2.904±0.078 0.167±0.002 0.450±0.001

Complete + all attr, unmasked recon 2.017±0.061 0.180±0.002 0.435±0.002
Cropped + 1 attribute (E) 2.522±0.100 0.167±0.002 0.417±0.001
Cropped + 1 attribute (D) 2.468±0.093 0.166±0.002 0.417±0.001

Cropped + 1 attribute (E + D) 2.496±0.065 0.167±0.002 0.416±0.001
Real images 2.744±0.140 - -

Table 1: Quantitative evaluations of our proposed methods.
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